pycatenary.utils module¶
-
pycatenary.utils.get_root_a(L, d, h, a0=1.0, tol=1e-06, maxit=1000, int1=1e-06, int2=1e+16)¶
-
pycatenary.utils.newton_raphson(f, df, x0, tol=1e-06, maxit=1000)¶ Root finding algorithm (for transcendental equations)
- Parameters
f (function) – must be a function (so f(x) = 0 returns the required x)
df (function) – derivative of the function f (df/dx)
x0 (double) – initial guess of x
tol (double) – tolerance
maxit (int) – maximum number of iterations
- Returns
x – root
- Return type
double
-
pycatenary.utils.bisection(f, int1, int2, tol=1e-06, maxit=1000)¶ Root finding algorithm (for transcendental equations)
- Parameters
f (function) – must be a function (so f(x) = 0 returns the required x)
int1 (double) – lower end value
int2 (double) – lower end value
tol (double) – tolerance
maxit (int) – maximum number of iterations
- Returns
x – root
- Return type
double
-
pycatenary.utils.nofloor_rigid(d, h, L, tol=1e-06, maxit=1000, int1=1e-06, int2=1e+16)¶
-
pycatenary.utils.nofloor_elastic(d, h, L, w, EA, tol=1e-06, maxit=1000, int1=1e-06, int2=1e+16)¶
-
pycatenary.utils.fully_lifted_elastic(d, h, L, w, EA, tol=1e-06, maxit=1000, int1=1e-06, int2=1e+16)¶
-
pycatenary.utils.fully_lifted_rigid(d, h, L, tol=1e-06, maxit=1000, int1=1e-06, int2=1e+16)¶
-
pycatenary.utils.partly_lifted_elastic(d, h, L, w, EA, tol=1e-06, maxit=1000, int1=1e-06, int2=1e+16)¶
-
pycatenary.utils.partly_lifted_rigid(d, h, L, tol=1e-06, maxit=1000, int1=1e-06, int2=1e+16)¶
-
pycatenary.utils.straight_elastic(d, h, L, w, EA, H_low=0, H_high=10000000000.0, tol=1e-06, maxit=1000)¶